Skip to main content
Log in

Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Lifestyle interventions, including dietary adjustments and exercise, are important for obesity management. This study enrolled adults with overweight or obesity to explore whether either low-carbohydrate diet (LCD) or exercise is more effective in metabolism improvement. Forty-five eligible subjects were randomly divided into an LCD group (n = 22) and an exercise group (EX, n = 23). The subjects either adopted LCD (carbohydrate intake < 50 g/day) or performed moderate-to-vigorous exercise (⩾ 30 min/day) for 3 weeks. After the interventions, LCD led to a larger weight loss than EX ( – 3.56 ± 0.37 kg vs. – 1.24 ± 0.39 kg, P < 0.001), as well as a larger reduction in fat mass ( – 2.10 ± 0.18 kg vs. – 1.25 ± 0.24 kg, P = 0.007) and waist circumference ( – 5.25 ± 0.52 cm vs. – 3.45 ± 0.38 cm, P = 0.008). Both interventions reduced visceral and subcutaneous fat and improved liver steatosis and insulin resistance. Triglycerides decreased in both two groups, whereas low-density lipoprotein cholesterol increased in the LCD group but decreased in the EX group. Various glycemic parameters, including serum glycated albumin, mean sensor glucose, coefficient of variability (CV), and largest amplitude of glycemic excursions, substantially declined in the LCD group. Only CV slightly decreased after exercise. This pilot study suggested that the effects of LCD and exercise are similar in alleviating liver steatosis and insulin resistance. Compared with exercise, LCD might be more efficient for weight loss and glucose homeostasis in people with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377 (1): 13–27

    Article  Google Scholar 

  2. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr, Brehm BJ, Bucher HC. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(3): 285–293

    Article  CAS  PubMed  Google Scholar 

  3. Bazzano LA, Hu T, Reynolds K, Yao L, Bunol C, Liu Y, Chen CS, Klag MJ, Whelton PK, He J. Effects of low-carbohydrate and lowfat diets: a randomized trial. Ann Intern Med 2014; 161(5): 309–318

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang HJ, He J, Pan LL, Ma ZM, Han CK, Chen CS, Chen Z, Han HW, Chen S, Sun Q, Zhang JF, Li ZB, Yang SY, Li XJ, Li XY. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern Med 2016; 176(8): 1074–1082

    Article  PubMed  Google Scholar 

  5. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc 2017; 65(4): 827–832

    Article  PubMed  Google Scholar 

  6. Carlson AL, Mullen DM, Bergenstal RM. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol Ther 2017; 19(S2): S4–S11

    Article  PubMed  CAS  Google Scholar 

  7. Jia W, Weng J, Zhu D, Ji L, Lu J, Zhou Z, Zou D, Guo L, Ji Q, Chen L, Chen L, Dou J, Guo X, Kuang H, Li L, Li Q, Li X, Liu J, Ran X, Shi L, Song G, Xiao X, Yang L, Zhao Z; Chinese Diabetes Society. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab Res Rev 2019; 35(6): e3158

    Article  PubMed  Google Scholar 

  8. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62–S69

    Article  PubMed Central  Google Scholar 

  9. Chinese Nutrition Society. Chinese Dietary Guidelines Summary. 1st ed. Beijing: People's Medical Publishing Press, 2016

    Google Scholar 

  10. Hill J, Timmis A. Exercise tolerance testing. BMJ 2002; 324(7345): 1084–1087

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34(4): 729–749

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qian LL, Wu L, Zhang L, Zhang J, Zhou J, Li YH, Fang QC, Li HT, Jia WP. Serum biomarkers combined with ultrasonography for early diagnosis of non-alcoholic fatty liver disease confirmed by magnetic resonance spectroscopy. Acta Pharmacol Sin 2020; 41(4): 554–560

    Article  CAS  PubMed  Google Scholar 

  13. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288(2): E462–E468

    Article  CAS  PubMed  Google Scholar 

  14. Merra G, Miranda R, Barrucco S, Gualtieri P, Mazza M, Moriconi E, Marchetti M, Chang TF, De Lorenzo A, Di Renzo L. Very-lowcalorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: a pilot double-blind study. Eur Rev Med Pharmacol Sci 2016; 20(12): 2613–2621

    CAS  PubMed  Google Scholar 

  15. Moreno B, Bellido D, Sajoux I, Goday A, Saavedra D, Crujeiras AB, Casanueva FF. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine 2014; 47(3): 793–805

    Article  CAS  PubMed  Google Scholar 

  16. Hashimoto Y, Fukuda T, Oyabu C, Tanaka M, Asano M, Yamazaki M, Fukui M. Impact of low-carbohydrate diet on body composition: meta-analysis of randomized controlled studies. Obes Rev 2016; 17 (6): 499–509

    Article  CAS  PubMed  Google Scholar 

  17. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ; the Dietary Intervention Randomized Controlled Trial (DIRECT) Group. Weight loss with a lowcarbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359(3): 229–241

    Article  CAS  PubMed  Google Scholar 

  18. Noakes M, Foster PR, Keogh JB, James AP, Mamo JC, Clifton PM. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr Metab (Lond) 2006; 3(1): 7

    Article  CAS  Google Scholar 

  19. Brinkworth GD, Noakes M, Clifton PM, Buckley JD. Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. Obesity (Silver Spring) 2009; 17(10): 1916–1923

    Article  CAS  Google Scholar 

  20. Ruth MR, Port AM, Shah M, Bourland AC, Istfan NW, Nelson KP, Gokce N, Apovian CM. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013; 62(12): 1779–1787

    Article  CAS  PubMed  Google Scholar 

  21. Ramírez-Campillo R, Andrade DC, Campos-Jara C, Henríquez-Olguín C, Alvarez-Lepín C, Izquierdo M. Regional fat changes induced by localized muscle endurance resistance training. J Strength Cond Res 2013; 27(8): 2219–2224

    Article  PubMed  Google Scholar 

  22. Gwinup G, Chelvam R, Steinberg T. Thickness of subcutaneous fat and activity of underlying muscles. Ann Intern Med 1971; 74(3): 408–411

    Article  CAS  PubMed  Google Scholar 

  23. Kostek MA, Pescatello LS, Seip RL, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Thompson PD, Hoffman EP, Price TB. Subcutaneous fat alterations resulting from an upper-body resistance training program. Med Sci Sports Exerc 2007; 39(7): 1177–1185

    Article  PubMed  Google Scholar 

  24. Krotkiewski M, Aniansson A, Grimby G, Björntorp P, Sjöström L. The effect of unilateral isokinetic strength training on local adipose and muscle tissue morphology, thickness, and enzymes. Eur J Appl Physiol Occup Physiol 1979; 42(4): 271–281

    Article  CAS  PubMed  Google Scholar 

  25. Seshadri P, Iqbal N. Low carbohydrate diets for weight loss: historical & environmental perspective. Indian J Med Res 2006; 123 (6): 739–747

    CAS  PubMed  Google Scholar 

  26. Rabast U, Vornberger KH, Ehl M. Loss of weight, sodium and water in obese persons consuming a high- or low-carbohydrate diet. Ann Nutr Metab 1981; 25(6): 341–349

    Article  CAS  PubMed  Google Scholar 

  27. Azar GJ, Bloom WL. Similarities of carbohydrate deficiency and fasting. II. Ketones, nonesterified fatty acids and nitrogen excretion. Arch Intern Med 1963; 112(3): 338–343

    Article  CAS  PubMed  Google Scholar 

  28. Astrup A, Meinert Larsen T, Harper A. Atkins and other lowcarbohydrate diets: hoax or an effective tool for weight loss? Lancet 2004; 364(9437): 897–899

    Article  PubMed  Google Scholar 

  29. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, Ludwig DS. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 2012; 307(24): 2627–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ebbeling CB, Feldman HA, Klein GL, Wong JMW, Bielak L, Steltz SK, Luoto PK, Wolfe RR, Wong WW, Ludwig DS. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ 2018; 363: k4583

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hall KD, Chen KY, Guo J, Lam YY, Leibel RL, Mayer LE, Reitman ML, Rosenbaum M, Smith SR, Walsh BT, Ravussin E. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr 2016; 104(2): 324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu T, Yao L, Reynolds K, Niu T, Li S, Whelton P, He J, Bazzano L. The effects of a low-carbohydrate diet on appetite: a randomized controlled trial. Nutr Metab Cardiovasc Dis 2016; 26(6): 476–488

    Article  CAS  PubMed  Google Scholar 

  33. Gibson AA, Seimon RV, Lee CM, Ayre J, Franklin J, Markovic TP, Caterson ID, Sainsbury A. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev 2015; 16(1): 64–76

    Article  CAS  PubMed  Google Scholar 

  34. Johnstone AM, Horgan GW, Murison SD, Bremner DM, Lobley GE. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr 2008; 87(1): 44–55

    Article  CAS  PubMed  Google Scholar 

  35. Mardinoglu A, Wu H, Bjornson E, Zhang C, Hakkarainen A, Räsänen SM, Lee S, Mancina RM, Bergentall M, Pietiläinen KH, Söderlund S, Matikainen N, Ståhlman M, Bergh PO, Adiels M, Piening BD, Granér M, Lundbom N, Williams KJ, Romeo S, Nielsen J, Snyder M, Uhlén M, Bergström G, Perkins R, Marschall HU, Bäckhed F, Taskinen MR, Borén J. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 2018; 27(3): 559–571.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwimmer JB, Ugalde-Nicalo P, Welsh JA, Angeles JE, Cordero M, Harlow KE, Alazraki A, Durelle J, Knight-Scott J, Newton KP, Cleeton R, Knott C, Konomi J, Middleton MS, Travers C, Sirlin CB, Hernandez A, Sekkarie A, McCracken C, Vos MB. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: a randomized clinical trial. JAMA 2019; 321(3): 256–265

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jang EC, Jun DW, Lee SM, Cho YK, Ahn SB. Comparison of efficacy of low-carbohydrate and low-fat diet education programs in non-alcoholic fatty liver disease: a randomized controlled study. Hepatol Res 2018; 48(3): E22–E29

    Article  CAS  PubMed  Google Scholar 

  38. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, Takano Y, Ueno T, Koga H, George J, Shiba N, Torimura T. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol 2017; 66(1): 142–152

    PubMed  Google Scholar 

  39. Smith SH. Using albumin and prealbumin to assess nutritional status. Nursing 2017; 47(4): 65–66

    Article  PubMed  Google Scholar 

  40. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, Yancy WS Jr, Brinkworth GD. A very lowcarbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care 2014; 37(11): 2909–2918

    Article  CAS  PubMed  Google Scholar 

  41. Blaychfeld-Magnazi M, Reshef N, Zornitzki T, Madar Z, Knobler H. The effect of a low-carbohydrate high-fat diet and ethnicity on daily glucose profile in type 2 diabetes determined by continuous glucose monitoring. Eur J Nutr 2020; 59(5): 1929–1936

    Article  CAS  PubMed  Google Scholar 

  42. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, Yancy WS Jr, Brinkworth GD. Comparison of lowand high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr 2015; 102(4): 780–790

    Article  CAS  PubMed  Google Scholar 

  43. Samkani A, Skytte MJ, Thomsen MN, Astrup A, Deacon CF, Holst JJ, Madsbad S, Rehfeld JF, Krarup T, Haugaard SB. Acute effects of dietary carbohydrate restriction on glycemia, lipemia and appetite regulating hormones in normal-weight to obese subjects. Nutrients 2018; 10(9): 1285

    Article  PubMed Central  CAS  Google Scholar 

  44. Hatamoto Y, Goya R, Yamada Y, Yoshimura E, Nishimura S, Higaki Y, Tanaka H. Effect of exercise timing on elevated postprandial glucose levels. J Appl Physiol (1985) 2017; 123(2): 278–284

    Article  CAS  Google Scholar 

  45. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake- regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13(3): 133–148

    Article  CAS  PubMed  Google Scholar 

  46. Wong VW, Adams LA, de Lédinghen V, Wong GL, Sookoian S. Noninvasive biomarkers in NAFLD and NASH-current progress and future promise. Nat Rev Gastroenterol Hepatol 2018; 15(8): 461–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (Nos. 20161430 and 20172025), National Natural Science Foundation of China (Nos. 81873646 and 81670790), and Shanghai Municipal Key Clinical Specialty.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhou or Weiping Jia.

Additional information

Compliance with ethics guidelines

Lingli Cai, Jun Yin, Xiaojing Ma, Yifei Mo, Cheng Li, Wei Lu, Yuqian Bao, Jian Zhou, and Weiping Jia declare that they have no conflicts of interest. All procedures were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Yin, J., Ma, X. et al. Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial. Front. Med. 15, 460–471 (2021). https://doi.org/10.1007/s11684-021-0861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0861-6

Keywords

Navigation